The strict emission control measures have profoundly changed the air pollution in the Yangtze River Delta (YRD) region, China. However, the impacts of decreasing fine particulates (PM2.5) and nitrogen oxide (NOx) on summer ozone (O3) formation still remain disputable. We perform simulations in the 2018 summer over the YRD using the WRF-Chem model that considers the aerosol radiative forcing (ARF) and HO2 heterogeneous loss on aerosol surface. The model reasonably reproduces the measured spatiotemporal surface O3 and PM2.5 concentrations and aerosol compositions. Model sensitivity experiments show that the NOx mitigation during recent years changes daytime O3 formation in summer from the transition regime to the NOx-sensitive regime in the YRD. The decreasing NOx emission generally weakens O3 formation and lowers ambient O3 levels in summer during recent years, except for some urban centers of megacities. While, the haze alleviation characterized by a decline in ambient PM2.5 concentration in the past years largely counteracts the daytime O3 decrease caused by NOx mitigation, largely contributing to the persistently high levels of summertime O3. The counteracting effect is dominantly attributed to the attenuated ARF and minorly contributed by the suppressed HO2 uptake and heterogeneous loss on aerosol surface. These results highlight that the repeated O3 pollution in the YRD is closely associated with NOx and haze alleviation and more efforts must be taken to achieve lower O3 levels.
Keywords: Aerosol radiative forcing; Counteracting effect; Ozone formation; Yangtze River Delta.
Copyright © 2023 Elsevier Ltd. All rights reserved.