Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.