Introduction: The dysregulation of psychophysiological responses to mental stressors is a common issue addressed in individuals with psychiatric conditions, while brain circuit abnormalities are often associated with psychiatric conditions and their manifestations. However, to our knowledge, there is no systematic overview that would comprehensively synthesize the literature on psychophysiological responses during laboratory-induced psychosocial stressor and neural correlates in people with mental disorders. Thus, we aimed to systematically review the existing research on psychophysiological response during laboratory-induced stress and its relationship with neural correlates as measured by magnetic resonance imaging techniques in mental disorders.
Methods: The systematic search was performed on PubMed/Medline, EBSCOhost/PsycArticles, Web of Science, and The Cochrane Library databases during November 2021 following the PRISMA guidelines. Risk of bias was evaluated by employing the checklists for cross-sectional and case-control studies from Joanna Briggs Institute (JBI) Reviewers Manual.
Results: Out of 353 de-duplicated publications identified, six studies were included in this review. These studies were identified as representing two research themes: (1) brain anatomy and psychophysiological response to mental stress in individuals with mental disorders, and (2) brain activity and psychophysiological response to mental stress in individuals with mental disorders.
Conclusions: Overall, the evidence from studies exploring the interplay between stress psychophysiology and neural correlates in mental disorders is limited and heterogeneous. Further studies are warranted to better understand the mechanisms of how psychophysiological stress markers interplay with neural correlates in manifestation and progression of psychiatric illnesses.
Keywords: MRI; brain imaging; mental disorders; psychiatry; psychophysiology; review; scoping review; stress.
Copyright © 2023 Gecaite-Stonciene, Rossetti, Brambilla, Hughes, Mickuviene and Bellani.