Background and objective: Cytokine storm (CS) is a major contributor to the fatal outcome of severe infectious diseases, including Covid-19. Treatment with the complement (C) C5 inhibitor eculizumab was beneficial in end-stage Covid-19, however, the mechanism of this effect is unknown. To clarify this, we analyzed the relationship between C activation and production of pro-inflammatory cytokines in a PBMC model.
Methods: Human PBMC with or without 20 % autologous serum was incubated with C3a, C5a, zymosan or zymosan-pre-activated serum (ZAS) for 24 h with or without eculizumab or the C5a receptor antagonist, DF2593A. C activation (sC5b-9) and 9 inflammatory cytokines were measured by ELISA.
Results: In serum-free unstimulated PBMC only IL-8 release could be measured during incubation. Addition of C5a increased IL-8 secretion only, ZAS induced both IL-2 and IL-8, while zymosan led to significant production of all cytokines, most abundantly IL-8. In the presence of serum the above effects were greatly enhanced, and the zymosan-induced rises of IL-1α, IL-1β IFN-γ and IL-2 were significantly attenuated by eculizumab but not by DF2593a.
Conclusions: These data highlight the complexity of interrelationships between C activation and cytokine secretion under different experimental conditions. The clinically relevant findings include the abundant formation of the chemokine IL-8, which was stimulated by C5a, and the suppression of numerous inflammatory cytokines by eculizumab, which explains its therapeutic efficacy in severe Covid-19. These data strengthen the clinical relevance of the applied PBMC model for drug screening against CS, enabling the separation of complex innate immune cross-talks.
Keywords: Anaphylatoxin; Complement activation; Complement inhibitor/antagonist; Cytokine storm; PBMC.
Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.