Prebiotic-mediated gastroprotective potentials of three bacterial levans through NF-κB-modulation and upregulation of systemic IL-17A

Int J Biol Macromol. 2023 Oct 1:250:126278. doi: 10.1016/j.ijbiomac.2023.126278. Epub 2023 Aug 10.

Abstract

This study aimed to investigate whether the gastroprotective effects of three types of bacterial levans are correlated with their prebiotic-associated anti-inflammatory/antioxidant potentials. Three levans designated as LevAE, LevP, and LevZ were prepared from bacterial honey isolates; purified, and characterized using TLC, NMR, and FTIR. The anti-inflammatory properties of levan preparations were assessed in LPS-stimulated RAW 264.7 cell lines, while their safety and gastroprotective potentials were assessed in Wistar rats. The three levans significantly reduced ulcer number (22.29-70.05 %) and severity (31.76-80.54 %) in the ethanol-induced gastric ulcer model compared to the control (P < 0.0001/each), with the highest effect observed in LevAE and levZ (200 mg/each) (P < 0.0001). LevZ produced the highest levels of glutathione; catalase activity, and the lowest MDA levels (P = 0.0001/each). The highest anti-inflammatory activity was observed in LevAE and levZ in terms of higher inhibitory effect on IL-1β and TNF-α production (P < 0.0001 each); COX2, PGE2, and NF-κB gene expression. The three levan preparations also proved safe with no signs of toxicity, with anti-lipidemic properties as well as promising prebiotic activity that directly correlated with their antiulcer effect. This novel study highlights the implication of prebiotic-mediated systemic immunomodulation exhibited by bacterial levans that directly correlated with their gastroprotective activity.

Keywords: Honey isolates; Immunomodulation; Levan; Peptic ulcer; Prebiotics; Systemic inflammation.