Clustering systems of phylogenetic networks

Theory Biosci. 2023 Nov;142(4):301-358. doi: 10.1007/s12064-023-00398-w. Epub 2023 Aug 12.

Abstract

Rooted acyclic graphs appear naturally when the phylogenetic relationship of a set X of taxa involves not only speciations but also recombination, horizontal transfer, or hybridization that cannot be captured by trees. A variety of classes of such networks have been discussed in the literature, including phylogenetic, level-1, tree-child, tree-based, galled tree, regular, or normal networks as models of different types of evolutionary processes. Clusters arise in models of phylogeny as the sets [Formula: see text] of descendant taxa of a vertex v. The clustering system [Formula: see text] comprising the clusters of a network N conveys key information on N itself. In the special case of rooted phylogenetic trees, T is uniquely determined by its clustering system [Formula: see text]. Although this is no longer true for networks in general, it is of interest to relate properties of N and [Formula: see text]. Here, we systematically investigate the relationships of several well-studied classes of networks and their clustering systems. The main results are correspondences of classes of networks and clustering systems of the following form: If N is a network of type [Formula: see text], then [Formula: see text] satisfies [Formula: see text], and conversely if [Formula: see text] is a clustering system satisfying [Formula: see text] then there is network N of type [Formula: see text] such that [Formula: see text].This, in turn, allows us to investigate the mutual dependencies between the distinct types of networks in much detail.

Keywords: Cluster; Compatibility; Evolution; Hybrid; Least common ancestor; Level-k; Network phylogenetics.