The Influence of Adventitious Carbon Groups on the Wetting of Copper: A Study on the Effect of Microstructure on the Static Contact Angle

Langmuir. 2023 Aug 29;39(34):12020-12031. doi: 10.1021/acs.langmuir.3c01060. Epub 2023 Aug 14.

Abstract

Tuning of the wetting behavior of metallic surfaces by chemical and topographical modification has become popular in recent years. Still, there is a lack in the understanding of fundamental relations between intrinsic properties of the material and its resulting water contact angle. It is widely accepted in the literature that transitions from a hydrophilic to increasingly hydrophobic behavior upon exposure to ambient conditions happen due to the adsorption of adventitious hydrocarbons. In order to investigate the role of metallic bulk microstructure in the wetting behavior and its transition properties, we created three different grain sizes and deformation states on copper by preparation combined with heat treatment. We found that for freshly prepared surfaces, differences in the wetting behavior show a higher static contact angle for mechanically prepared surfaces with a fine-crystalline deformation layer compared to the electropolished cold-rolled copper sheet and the annealed defect-free coarse-grained surface. Already after five days of storage time, most of this difference vanishes, and all surfaces show a wetting behavior with a contact angle in the range of 97-100° after 30 days. Though long-term wetting behavior seems largely independent of microstructure, correlated XPS measurements showed an increased adsorption of organic contaminants of the mechanically polished surface. Preparation-induced near-surface defects seem to accelerate adsorption, while varying grain size and slight bulk deformation from rolling processes did not show significant effects. Complex relations between the amount of adsorbed carbon and the polarity of the adsorption film were found to depend on the sample age and influence the contact angle.