Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic inflammatory cytokine that emerged as a pivotal regulator in the pathogenesis of several autoimmune diseases including rheumatoid arthritis (RA). MIF occurs in two immunologically distinct conformational isoforms, indicated as reduced (redMIF) and oxidized MIF (oxMIF) where the latter exerts disease-related activities. In this study we demonstrate the presence of circulating oxMIF in RA patients and investigate the in vivo effects of an oxMIF-neutralizing antibody in a murine model of RA. By advanced antibody engineering we generated the fully human anti-oxMIF antibody ON104 with abolished effector functions. The therapeutic potential of ON104 was tested in a model of Collagen-Induced Arthritis (CIA) in DBA/1j mice. At disease onset, the mice received ON104 twice a week for three weeks. Clinical symptoms were assessed daily, and histological examinations of the joints were performed at the end of the study. Antibody ON104, specifically targeting human and murine oxMIF, is highly affine and does not elicit effector functions in vitro. The treatment of CIA mice with ON104 profoundly modulated disease progression with marked amelioration of clinical signs of arthritis that was associated with reduced synovial and cartilage damage and reduced F4/80-positive macrophages in the joints. These data prove that oxMIF is a relevant target in a well-known model of human RA and its specific neutralization by the antibody ON104 ameliorates clinical and histological signs of the disease in the so-treated mice. Thus, ON104 represents a new and promising treatment option for RA and possibly other autoimmune diseases.
Keywords: Macrophage migration inhibitory factor (MIF); Rheumatoid arthritis (RA) therapy; Type II collagen-induced arthritis (CIA type II); anti-oxMIF mAb ON104; oxMIF.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.