Asymmetric Multienergy-Coupled Radiative Warming Textiles for Personal Thermal-Moisture Management

ACS Appl Mater Interfaces. 2023 Aug 30;15(34):41180-41192. doi: 10.1021/acsami.3c10004. Epub 2023 Aug 16.

Abstract

In order to address the requirements for warmth and energy conservation in cold climates, the development of personal thermal management textiles that regulate local human thermal comfort has emerged as a promising solution in recent times. Nevertheless, existing warming textile strategies often rely on a singular energy source, exhibit inadequate air/moisture permeability, and lack adaptability to dynamic and intricate climate variations. Herein, a novel multienergy-coupled radiative warming Janus textile has been effectively designed and fabricated via screen printing and foam finishing. Taking advantage of the synergistic effects of directional water transport capability of polyester-covered cotton (with a directional water-transport index of R = 577.5%), high mid-infrared radiant reflection (at 60%), electrothermal conversion of copper coating (with a sheet resistance of 0.01 Ω sq-1), and strong solar absorption of the nanoporous structure TA@APTES@Fe(III)@CNT (TAFC) coating (at 98.5%), the Janus fabric exhibits exceptional performance in expelling out one-way sweat/moisture (R = 329.3%) and solar heating (86.9 °C)/Joule heating (226.4 °C at 3.0 V)/heat retention (2.4 °C higher than that of cotton fabric). Furthermore, the fabric is also provided with exceptional mechanical, washing, flame-retardant, and antibacterial performance. This research holds the potential to revolutionize the development and production of warming textiles by incorporating desirable sweat/moisture permeability and multienergy-coupled heating.

Keywords: Janus fabric; electrothermal; metal-polyphenol network; one-way water transport; photothermal.