The present study reports on the encapsulation of Curcuma longa (L.) essential oil (CLEO) in chitosan nanopolymer as a novel nanotechnology preservative for enhancing its antibacterial, antifungal, and mycotoxin inhibitory efficacy. GC-MS analysis of CLEO showed the presence of α-turmerone (42.6 %) and β- turmerone (14.0 %) as the major components. CLEO-CSNPs were prepared through the ionic-gelation technique and confirmed by TEM micrograph, DLS, XRD, and FTIR. In vitro, bactericidal activity of CLEO-CSNPs at a concentration of 100 μg/mL showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, which mostly rely on ROS production and depend on its penetration and interaction with bacterial cells. Furthermore, the CLEO-CSNPs during in vitro investigation against F. graminearum completely inhibited the growth and zearalenone and deoxynivalenol production at 0.75 μL/mL, respectively. Further, CLEO-CSNPs enhanced antioxidant activity against DPPH• and ABTS•+ with IC50 values 0.95 and 0.66 μL/mL, respectively, and without any negative impacts on germinating seeds were observed during the phytotoxicity investigation. Overall, experiments concluded that encapsulated CLEO enhances antimicrobial inhibitory efficiency against stored foodborne pathogens.
Keywords: Antibacterial; Antifungal; Antimycotoxin; Curcuma longa essential oil; Nanoencapsulation.
Copyright © 2023 Elsevier B.V. All rights reserved.