We identified mortality-, age-, and sex-associated differences in relation to reference intervals (RIs) for laboratory tests in population-wide data from nearly 2 million hospital patients in Denmark and comprising more than 300 million measurements. A low-parameter mathematical wave-based modification method was developed to adjust for dietary and environment influences during the year. The resulting mathematical fit allowed for improved association rates between re-classified abnormal laboratory tests, patient diagnoses, and mortality. The study highlights the need for seasonally modified RIs and presents an approach that has the potential to reduce over- and underdiagnosis, affecting both physician-patient interactions and electronic health record research as a whole.
Keywords: health data science; hospital laboratory tests; mortality; reference intervals; seasonality.
© 2023 The Author(s).