Several inefficiencies in drug development trial implementation may be improved by moving data collection from the clinic to mobile, allowing for more frequent measurements and therefore increased statistical power while aligning to a patient-centric approach to trial design. Sensor-based digital health technologies such as mobile spirometry (mSpirometry) are comparable to clinic spirometry for capturing outcomes, such as forced expiratory volume in 1 s (FEV1); however, the impact of remote spirometry measurements on the detection of treatment effect has not been investigated. A protocol for a multicenter, single-arm, open-label interventional trial of long-acting beta agonist (LABA) therapy among 60 participants with uncontrolled moderate asthma is described. Participants will complete twice-daily mSpirometry at home and clinic spirometry during weekly visits, alongside continuous use of a wrist-worn wearable and regular completion of several diaries capturing asthma symptoms as well as participant- and site-reported satisfaction and ease of use of mSpirometry. The co-primary objectives of this study are (A) to quantify the treatment effect of LABA therapy among participants with moderate asthma, using both clinical spirometry (FEV1c ) and mSpirometry (FEV1m ); and (B) to investigate whether FEV1m is as accurate as FEV1c in detecting the treatment effect using a mixed-effect model for repeated measures. Study results will help inform whether the deployment of mSpirometry and a wrist-worn wearable for remote data collection are feasible in a multicenter setting among participants with moderate asthma, which may then be generalizable to other populations with respiratory disease.
© 2023 The Authors. Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.