An optimized visualization and quantitative protocol for in-depth evaluation of lymphatic vessel architecture in the liver

Am J Physiol Gastrointest Liver Physiol. 2023 Nov 1;325(5):G379-G390. doi: 10.1152/ajpgi.00139.2023. Epub 2023 Aug 22.

Abstract

The liver lymphatic system is essential for maintaining tissue fluid balance and immune function. The detailed structure of lymphatic vessels (LVs) in the liver remains to be fully demonstrated. The aim of this study is to reveal LV structures in normal and diseased livers by developing a tissue-clearing and coimmunolabeling protocol optimized for the tissue size and the processing time for three-dimensional (3-D) visualization and quantification of LVs in the liver. We showed that our optimized protocol enables in-depth exploration of lymphatic networks in the liver, consisting of LVs along the portal tract (deep lymphatic system) and within the collagenous Glisson's capsule (superficial lymphatic system) in different species. With this protocol, we have shown 3-D LVs configurations in relation to blood vessels and bile ducts in cholestatic mouse livers, in which LVs were highly dilated and predominantly found around highly proliferating bile ducts and peribiliary vascular plexuses in the portal tract. We also established a quantification method using a 3-D volume-rendering approach. We observed a 1.6-fold (P < 0.05) increase in the average diameter of LVs and a 2.4-fold increase (P < 0.05) in the average branch number of LVs in cholestatic/fibrotic livers compared with control livers. Furthermore, cholestatic/fibrotic livers showed a 4.3-fold increase (P < 0.05) in total volume of LVs compared with control livers. Our optimized protocol and quantification method demonstrate an efficient and simple liver tissue-clearing procedure that allows the comprehensive analysis of liver lymphatic system.NEW & NOTEWORTHY This article showed a comprehensive 3-D-structural analysis of liver lymphatic vessel (LV) in normal and diseased livers in relation to blood vessels and bile ducts. In addition to the LVs highly localized at the portal tract, we revealed capsular LVs in mouse, rat, and human livers. In cholestatic livers, LVs are significantly increased and dilated compared with normal livers. Our optimized protocol provides detailed spatial information for LVs remodeling in normal and pathological conditions.

Keywords: 3-D imaging; cholestasis; fibrosis; liver; lymphatic vessel; tissue-clearing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bile Ducts
  • Cholestasis* / pathology
  • Humans
  • Liver / pathology
  • Liver Cirrhosis / pathology
  • Lymphatic Vessels* / diagnostic imaging
  • Lymphatic Vessels* / pathology
  • Mice
  • Rats