Characterization of adnexal lesions using photoacoustic imaging to improve sonographic O-RADS risk assessment

Ultrasound Obstet Gynecol. 2023 Dec;62(6):891-903. doi: 10.1002/uog.27452.

Abstract

Objective: To assess the impact of photoacoustic imaging (PAI) on the assessment of ovarian/adnexal lesion(s) of different risk categories using the sonographic ovarian-adnexal imaging-reporting-data system (O-RADS) in women undergoing planned oophorectomy.

Method: This prospective study enrolled women with ovarian/adnexal lesion(s) suggestive of malignancy referred for oophorectomy. Participants underwent clinical ultrasound (US) examination followed by coregistered US and PAI prior to oophorectomy. Each ovarian/adnexal lesion was graded by two radiologists using the US O-RADS scale. PAI was used to compute relative total hemoglobin concentration (rHbT) and blood oxygenation saturation (%sO2 ) colormaps in the region of interest. Lesions were categorized by histopathology into malignant ovarian/adnexal lesion, malignant Fallopian tube only and several benign categories, in order to assess the impact of incorporating PAI in the assessment of risk of malignancy with O-RADS. Malignant and benign histologic groups were compared with respect to rHbT and %sO2 and logistic regression models were developed based on tumor marker CA125 alone, US-based O-RADS alone, PAI-based rHbT with %sO2 , and the combination of CA125, O-RADS, rHbT and %sO2. Areas under the receiver-operating-characteristics curve (AUC) were used to compare the diagnostic performance of the models.

Results: There were 93 lesions identified on imaging among 68 women (mean age, 52 (range, 21-79) years). Surgical pathology revealed 14 patients with malignant ovarian/adnexal lesion, two with malignant Fallopian tube only and 52 with benign findings. rHbT was significantly higher in malignant compared with benign lesions. %sO2 was lower in malignant lesions, but the difference was not statistically significant for all benign categories. Feature analysis revealed that rHbT, CA125, O-RADS and %sO2 were the most important predictors of malignancy. Logistic regression models revealed an AUC of 0.789 (95% CI, 0.626-0.953) for CA125 alone, AUC of 0.857 (95% CI, 0.733-0.981) for O-RADS only, AUC of 0.883 (95% CI, 0.760-1) for CA125 and O-RADS and an AUC of 0.900 (95% CI, 0.815-0.985) for rHbT and %sO2 in the prediction of malignancy. A model utilizing all four predictors (CA125, O-RADS, rHbT and %sO2 ) achieved superior performance, with an AUC of 0.970 (95% CI, 0.932-1), sensitivity of 100% and specificity of 82%.

Conclusions: Incorporating the additional information provided by PAI-derived rHbT and %sO2 improves significantly the performance of US-based O-RADS in the diagnosis of adnexal lesions. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.

Keywords: color Doppler; ovarian cancer; photoacoustic imaging; ultrasound.

MeSH terms

  • Adnexal Diseases* / pathology
  • CA-125 Antigen
  • Female
  • Humans
  • Middle Aged
  • Ovarian Neoplasms* / pathology
  • Photoacoustic Techniques*
  • Prospective Studies
  • Retrospective Studies
  • Risk Assessment
  • Sensitivity and Specificity
  • Ultrasonography / methods

Substances

  • CA-125 Antigen