Epstein-Barr virus (EBV) latency is controlled by epigenetic silencing by DNA methylation [5-methyl cytosine (5mC)], histone modifications, and chromatin looping. However, how they dictate the transcriptional program in EBV-associated gastric cancers remains incompletely understood. EBV-associated gastric cancer displays a 5mC hypermethylated phenotype. A potential treatment for this cancer subtype is the DNA hypomethylating agent, which induces EBV lytic reactivation and targets hypermethylation of the cellular DNA. In this study, we identified a heterogeneous pool of EBV epialleles within two tumor-derived gastric cancer cell lines that are disrupted with a hypomethylating agent. Stochastic DNA methylation patterning at critical regulatory regions may be an underlying mechanism for spontaneous reactivation. Our results highlight the critical role of epigenetic modulation on EBV latency and life cycle, which is maintained through the interaction between 5mC and the host protein CCCTC-binding factor.
Keywords: CTCF; DNA methylation; Epstein-Barr virus; epigenetics; gastric cancer.