Supplementation with protected kapok seed oil and choline chloride to improve the performance and lipid status of thin-tailed sheep

Vet World. 2023;16(7):1520-1526. doi: 10.14202/vetworld.2023.1520-1526. Epub 2023 Jul 24.

Abstract

Background and aim: Healthy meat production is an important aspect of increasing sheep productivity. This study aimed to examine the influence of protected kapok seed oil (KSO) in combination with choline chloride (CC) on the feed utilization, lipid status, and performance of thin-tailed sheep.

Materials and methods: Thirty male thin-tailed sheep (approximately 6 months old, with an average body weight of 12.59 ± 1.48 kg) were divided into six treatment groups (five heads/treatment). Factor 1 consisted of two treatments: K1 (KSO supplementation at 10% supplementation and 75% protection level) and K0 (without KSO supplementation). Factor 2 consisted of three levels of CC: (C0: 0%; C1: 1.5% and C2: 3% feed dry matter (DM) basis supplementation levels). The variables measured were the DM consumption, DM digestibility, organic matter digestibility, nitrogen retention, daily body weight gain (DBWG), and blood and meat lipid status. The data were analyzed using analysis of variance in a completely randomized design in a factorial pattern of 2 × 3 × 5.

Results: Choline chloride supplementation (up to 3%) increased DM consumption in the K0C2 group. The CC and protected KSO (K1C2) supplementation combination resulted in the highest DM consumption level (p < 0.05). The protected KSO supplementation increased DBWG (the DBWG in the K1C0 group was higher than that in the K0C0 group, and the highest DBWG was found in the K1C2 group) (p < 0.05). Protected KSO and CC supplementation decreased cholesterol levels and increased the relative proportion of linoleic acid in meat (p < 0.05).

Conclusion: Combined supplementation with protected KSO and CC improved the feed utilization and performance of male thin-tailed sheep. There were increases in DBWG, decreases in intramuscular fat and cholesterol levels, and increases in meat linoleic acid levels.

Keywords: cholesterol; linoleic acid; male thin-tailed sheep; meat; performance.