Development and Validation of Robust Ferroptosis-Related Genes in Myocardial Ischemia-Reperfusion Injury

J Cardiovasc Dev Dis. 2023 Aug 12;10(8):344. doi: 10.3390/jcdd10080344.

Abstract

(1) Background: Despite the evidence that ferroptosis is involved in myocardial ischemia-reperfusion (MIR), the critical regulator of ferroptosis in MIR remains unclear. (2) Methods: We included three GEO datasets and a set of ferroptosis-related genes with 259 genes. Following the identification of the differentially expressed ferroptosis-related genes (DEFRGs) and hub genes, we performed the functional annotation, protein-protein interaction network, and immune infiltration analysis. The GSE168610 dataset, a cell model, and an animal model were then used to verify key genes. (3) Results: We identified 17 DEFRGs and 9 hub genes in the MIR samples compared to the control. Heme oxygenase 1 (Hmox1), activating transcription factor 3 (Atf3), epidermal growth factor receptor (Egfr), and X-box binding protein 1 (Xbp1) were significantly upregulated in response to ischemic and hypoxic stimuli. In contrast, glutathione peroxidase 4 (Gpx4) and vascular endothelial growth factor A (Vegfa) were consistently decreased in either the oxygen and glucose deprivation/reoxygenation cell or the MIR mouse model. (4) Conclusions: This study emphasized the relevance of ferroptosis in MIR. It has been successfully demonstrated that nine ferroptosis-related genes (Hmox1, Atf3, Egfr, Gpx4, Cd44, Vegfa, asparagine synthetase (Asns), Xbp1, and bromodomain containing 4 (Brd4)) are involved in the process. Additional studies are needed to explore potential therapeutic targets for MIR.

Keywords: Hmox1; bioinformatics analysis; ferroptosis; immune infiltration; myocardial ischemia-reperfusion.