N2O and CH4 fluxes from intensively managed grassland: The importance of biological and environmental drivers vs. management

Sci Total Environ. 2023 Dec 10:903:166389. doi: 10.1016/j.scitotenv.2023.166389. Epub 2023 Aug 23.

Abstract

Agriculture is the main contributor to anthropogenic nitrous oxide (N2O) and methane (CH4) emissions. Therefore, mitigation options are urgently needed. In contrast to carbon dioxide, eddy covariance measurements of N2O and CH4 fluxes are still scarce, and thus little is known how environmental and biotic drivers as well as management affect the net N2O and CH4 exchange in grasslands. Thus, we investigated the most important drivers of net ecosystem N2O and CH4 fluxes in a temperate grassland, and continued a N2O mitigation experiment (increased clover proportion vs. fertilization with slurry). Random forest gap-filling models were able to capture intermittent emission peaks, performing better for half-hourly N2O than for CH4 fluxes. The unfertilized clover parcel (parcel B) continued to show lower N2O emissions (4.4 and 2.7 kg N2O-N ha-1 yr-1) compared to the fertilized parcel (parcel A; 6.9 and 5.9 kg N2O-N ha-1 yr-1) for 2019 and 2020, respectively. Tier 1 nitrogen (N) emission factors of 2.6 % and 1.9 % were observed at the fertilized parcel during the study period. Lower soil N concentrations indicated a lower N leaching risk at the clover than at the fertilized parcel. Annual CH4 emissions (including periods with sheep grazing) were similar from both parcels, and ranged from 25 to 38.5 kg CH4-C ha-1. The most important drivers of both N2O and CH4 fluxes were lagged precipitation and water filled pore space, but also management (for N2O from parcel B; CH4 from parcel A). Biotic variables such as vegetation height and leaf area index were important predictors for the N2O exchange, while grazing temporarily increased CH4 emissions. Overall, reducing N fertilization and increasing the legume proportion were effective N2O reduction measures. In particular, adjusting N fertilization to plant N demands can help to avoid high N2O emissions from grasslands.

Keywords: Eddy covariance; Environmental drivers; Gap-filling; Grassland; Greenhouse gases; Legumes; Management; Methane; Nitrous oxide.