The US Food and Drug Administration is clearing an increasing number of artificial intelligence and machine learning (AI/ML)-based medical devices through the 510(k) pathway. This pathway allows clearance if the device is substantially equivalent to a former cleared device (ie, predicate). We analysed the predicate networks of cleared AI/ML-based medical devices (cleared between 2019 and 2021), their underlying tasks, and recalls. More than a third of cleared AI/ML-based medical devices originated from non-AI/ML-based medical devices in the first generation. Devices with the longest time since the last predicate device with an AI/ML component were haematology (2001), radiology (2001), and cardiovascular devices (2008). Especially for devices in radiology, the AI/ML tasks changed frequently along the device's predicate network, raising safety concerns. To date, only a few recalls might have affected the AI/ML components. To improve patient care, a stronger focus should be placed on the distinctive characteristics of AI/ML when defining substantial equivalence between a new AI/ML-based medical device and predicate devices.
Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.