Background: To evaluate if coronary CT angiography (CCTA) monoenergetic reconstructions, obtained with a dual-layer spectral detector computed tomography (DLCT) system, offer improved image quality compared with 120 kVp conventional images without affecting the quantitative assessment of coronary stenoses. Methods: Fifty CCTA datasets (30 men; mean age: 61.6 ± 12.3 years) acquired with a DLCT system were reconstructed using virtual monoenergetic images (VMI) from 40 to 100 keV with 10 keV increment and compared with conventional images. An analysis of objective image quality was performed, evaluating the signal- and contrast-to-noise ratio. For the subjective assessment, two readers used a 5-point Likert scoring system to evaluate sharpness, noise, demarcation of coronary plaques, vascular contrast, and an overall score. Furthermore, coronary stenoses were analyzed for each vessel to describe the diagnostic agreement between monoenergetic images and conventional images. Results: The objective image analysis showed that all reconstructions from 70 keV to 40 keV show higher SNR (from 61.33 ± 12.46 to 154.22 ± 42.91, respectively) and CNR (from 51.45 ± 11.19 to 135.63 ± 39.38, respectively) compared with conventional images (all p < 0.001). The 40 keV monoenergetic images obtained the best average score for sharpness, vascular contrast, and for the overall impression (all with p < 0.001). The detection and grading of stenoses of the coronary arteries with conventional and monoenergetic images at 70 keV and 40 keV showed an overall excellent interobserver agreement (k= 0.81 [0.72-0.91]). Conclusions: The 40 keV virtual monoenergetic images obtained with a DLCT system allow the objective and subjective image quality of coronary CT angiography to be improved.
Keywords: computed tomography angiography; coronary artery disease; coronary stenosis; dual-energy computed tomography.