Profiling the Major Aroma-Active Compounds of Microwave-Dried Jujube Slices through Molecular Sensory Science Approaches

Foods. 2023 Aug 10;12(16):3012. doi: 10.3390/foods12163012.

Abstract

To discriminate the aroma-active compounds in dried jujube slices through microwave-dried treatments and understand their sensory attributes, odor activity value (OAV) and detection frequency analysis (DFA) combined with sensory analysis and analyzed through partial least squares regression analysis (PLSR) were used collaboratively. A total of 21 major aromatic active compounds were identified, among which 4-hexanolide, 4-cyclopentene-1,3-dione, 5-methyl-2(5H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)furanone, 3,5-dihydroxy-2-methyl-4-pyrone were first confirmed as aromatic compounds of jujube. Sensory evaluation revealed that the major characteristic aromas of dried jujube slices were caramel flavor, roasted sweet flavor, and bitter and burnt flavors. The PLSR results showed that certain compounds were related to specific taste attributes. 2,3-butanedione and acetoin had a significant positive correlation with the roasted sweet attribute. On the other hand, γ-butyrolactone, 4-cyclopentene-1,3-dione, and 4-hydroxy-2,5-dimethyl-3(2H)furanone had a significant positive impact on the caramel attributes. For the bitter attribute, 2-acetylfuran and 5-methyl-2(5H)-furanone were positively correlated. Regarding the burnt flavor, 5-methyl-2-furancarboxaldehyde and 3,5-dihydroxy-2-methyl-4-pyrone were the most influential odor-active compounds. Finally, 2-furanmethanol and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one were identified as the primary sources of the burnt and bitter flavors. Importantly, this work could provide a theoretical basis for aroma control during dried jujube slices processing.

Keywords: aroma-active compound; dried jujube slices; odor activity value; partial least squares regression.

Grants and funding

This research was funded by National Key Research and development project, Taishan Scholar Youth Expert Project, tsqn202211273.