Anaplastic large cell lymphoma (ALCL), one of the most common T-cell lymphomas, shows unifying pathological features but is clinically and genetically heterogeneous. One genetic subgroup, characterized by recurrent DUSP22 rearrangements (R), has distinct morphologic, immunophenotypic, and molecular features and can be identified in routine pathology practice using a breakapart (BAP) fluorescence in situ hybridization (FISH) probe. However, some cases show equivocal BAP-FISH findings (BAP-FISHEQ) and the features of these cases are poorly understood. Here, we sought to characterize DUSP22 BAP-FISHEQ ALCLs further. First, we applied an immunohistochemistry (IHC) algorithm using TIA1, pSTAT3Y705, and LEF1, which can predict DUSP22-R with high accuracy. Among 37 BAP-FISHEQ ALCLs, 18 (49%) were IHC-algorithm positive (IHCPOS), 8 (21%) were IHC-algorithm negative (IHCNEG), and 11 (30%) were IHCEQ. In 32 BAP-FISHEQ cases, we also applied a dual-color, dual-fusion (D-FISH) probe for t(6;7)(p25.3;q32.3), which accounts for 45% of DUSP22-R ALCLs. Among BAP-FISHEQ cases, D-FISH was positive in 10/18 IHCPOS cases (56%), 0/9 IHCEQ cases (0%), and 0/5 IHCNEG cases (0%). Median survival in BAP-FISHEQ ALCLs was 105 months, intermediate between BAP-FISHPOS ALCLs (median survival not reached) and BAP-FISHNEG ALCLs (19 months). Thus, DUSP22 BAP-FISHEQ ALCLs are clinicopathologically heterogeneous, likely due to an admixture of cases with an unbalanced DUSP22-R and cases with focal deletions without rearrangement. For clinical reporting, we recommend that DUSP22 BAP-FISHEQ ALCLs be reported as equivocal, and not be grouped with BAP-FISHPOS ALCLs. Clinical adoption of an IHC algorithm, possibly supplemented by t(6; 7) D-FISH, could facilitate genetic subtyping in about two-thirds of BAP-FISHEQ ALCLs.
Keywords: Anaplastic large cell lymphoma; Cytogenetics; DUSP22; Fluorescence in situ hybridization.
Copyright © 2023 Elsevier Inc. All rights reserved.