Robotic Modules for the Programmable Chemputation of Molecules and Materials

ACS Cent Sci. 2023 Jul 26;9(8):1525-1537. doi: 10.1021/acscentsci.3c00304. eCollection 2023 Aug 23.

Abstract

Before leveraging big data methods like machine learning and artificial intelligence (AI) in chemistry, there is an imperative need for an affordable, universal digitization standard. This mirrors the foundational requisites of the digital revolution, which demanded standard architectures with precise specifications. Recently, we have developed automated platforms tailored for chemical AI-driven exploration, including the synthesis of molecules, materials, nanomaterials, and formulations. Our focus has been on designing and constructing affordable standard hardware and software modules that serve as a blueprint for chemistry digitization across varied fields. Our platforms can be categorized into four types based on their applications: (i) discovery systems for the exploration of chemical space and novel reactivity, (ii) systems for the synthesis and manufacture of fine chemicals, (iii) platforms for formulation discovery and exploration, and (iv) systems for materials discovery and synthesis. We also highlight the convergent evolution of these platforms through shared hardware, firmware, and software alongside the creation of a unique programming language for chemical and material systems. This programming approach is essential for reliable synthesis, designing experiments, discovery, optimization, and establishing new collaboration standards. Furthermore, it is crucial for verifying literature findings, enhancing experimental outcome reliability, and fostering collaboration and sharing of unsuccessful experiments across different research labs.

Publication types

  • Review