Diabetic cardiomyopathy, an increasingly global epidemic and a major cause of heart failure with preserved ejection fraction (HFpEF), is associated with hyperglycemia, insulin resistance, and intracardiomyocyte calcium mishandling. Here we identify that, in db/db mice with type 2 diabetes-induced HFpEF, abnormal remodeling of cardiomyocyte transverse-tubule microdomains occurs with downregulation of the membrane scaffolding protein cardiac bridging integrator 1 (cBIN1). Transduction of cBIN1 by AAV9 gene therapy can restore transverse-tubule microdomains to normalize intracellular distribution of calcium-handling proteins and, surprisingly, glucose transporter 4 (GLUT4). Cardiac proteomics revealed that AAV9-cBIN1 normalized components of calcium handling and GLUT4 translocation machineries. Functional studies further identified that AAV9-cBIN1 normalized insulin-dependent glucose uptake in diabetic cardiomyocytes. Phenotypically, AAV9-cBIN1 rescued cardiac lusitropy, improved exercise intolerance, and ameliorated hyperglycemia in diabetic mice. Restoration of transverse-tubule microdomains can improve cardiac function in the setting of diabetic cardiomyopathy and can also improve systemic glycemic control.
Keywords: Cardiology; Cell Biology; Gene therapy; Glucose metabolism; Heart failure.