Validating ASHS-T1 automated entorhinal and transentorhinal cortical segmentation in Alzheimer's disease

Psychiatry Res Neuroimaging. 2023 Oct:335:111707. doi: 10.1016/j.pscychresns.2023.111707. Epub 2023 Aug 22.

Abstract

The current study aimed to validate entorhinal and transentorhinal cortical volumes measured by the automated segmentation tool Automatic Segmentation of Hippocampal Subfields (ASHS-T1). The study sample comprised 34 healthy controls (HCs), 37 individuals with amnestic mild cognitive impairment (aMCI), and 29 individuals with Alzheimer's disease (AD) dementia from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Entorhinal and transentorhinal cortical volumes were assessed using ASHS-T1, manual segmentation, as well as a widely used automated segmentation tool, FreeSurfer v6.0.1. Mean differences, intraclass correlation coefficients, and Bland-Altman plots were computed. ASHS-T1 tended to underestimate entorhinal and transentorhinal cortical volumes relative to manual segmentation and FreeSurfer. There was variable consistency and low agreement between ASHS-T1 and manual segmentation volumes. There was low-to-moderate consistency and low agreement between ASHS-T1 and FreeSurfer volumes. There was a trend toward higher consistency and agreement for the entorhinal cortex in the aMCI and AD groups compared to the HC group. Despite the differences in volume measurements, ASHS-T1 was sensitive to entorhinal and transentorhinal cortical atrophy in both early and late disease stages. Based on the current study, ASHS-T1 appears to be a promising tool for automated entorhinal and transentorhinal cortical volume measurement in individuals with likely underlying AD.

Keywords: Alzheimer's disease; Automated segmentation; Entorhinal cortex; Magnetic resonance imaging; Manual segmentation; Transentorhinal cortex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / diagnostic imaging
  • Alzheimer Disease* / psychology
  • Entorhinal Cortex / diagnostic imaging
  • Hippocampus / diagnostic imaging
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods