Progression to psychosis has been associated with increased cortical thinning in the frontal, temporal and parietal lobes in individuals at clinical high risk for the disorder (CHR-P). The timing and spatial extent of these changes are thought to be influenced by age. However, most evidence so far stems from adult samples. Longitudinal studies are essential to understanding the neuroanatomical changes associated to transition to psychosis during adolescence, and their relationship with age. We conducted a longitudinal, multisite study including adolescents at CHR-P and healthy controls (HC), aged 10-17 years. Structural images were acquired at baseline and at 18-month follow-up. Images were processed with the longitudinal pipeline in FreeSurfer. We used a longitudinal two-stage model to compute the regional cortical thickness (CT) change, and analyze between-group differences controlling for age, sex and scan, and corrected for multiple comparisons. Linear regression was used to study the effect of age at baseline. A total of 103 individuals (49 CHR-P and 54 HC) were included in the analysis. During follow-up, the 13 CHR-P participants who transitioned to psychosis exhibited greater CT decrease over time in the right parietal cortex compared to those who did not transition to psychosis and to HC. Age at baseline correlated with longitudinal changes in CT, with younger individuals showing greater cortical thinning in this region. The emergence of psychosis during early adolescence may have an impact on typical neuromaturational processes. This study provides new insights on the cortical changes taking place prior to illness onset.
Keywords: Child and adolescence psychiatry; Clinical high risk for psychosis; Cortical thickness; Structural MRI.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.