Personalized coronary and myocardial blood flow models incorporating CT perfusion imaging and synthetic vascular trees

medRxiv [Preprint]. 2023 Aug 23:2023.08.17.23294242. doi: 10.1101/2023.08.17.23294242.

Abstract

Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges - incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary models combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. Personalized flow distributions and model parameters are informed by clinical CT myocardial perfusion imaging and cardiac function using surrogate-based optimization. We reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.

Publication types

  • Preprint