Trigeminal innervation and tactile responses in mouse tongue

bioRxiv [Preprint]. 2024 May 13:2023.08.17.553449. doi: 10.1101/2023.08.17.553449.

Abstract

The mammalian tongue is richly innervated with somatosensory, gustatory and motor fibers. These form the basis of many ethologically important functions such as eating, speaking and social grooming. Despite its high tactile acuity and sensitivity, the neural basis of tongue mechanosensation remains largely mysterious. Here we explored the organization of mechanosensory afferents in the tongue and found that each lingual papilla is innervated by Piezo2 + trigeminal neurons. Notably, each fungiform papilla contained highly specialized ring-like sensory neuron terminations that asymmetrically circumscribe the taste buds. Myelinated lingual afferents in the mouse lingual papillae did not form corpuscular sensory end organs but rather had only free nerve endings. In vivo single-unit recordings from the trigeminal ganglion revealed lingual low-threshold mechanoreceptors (LTMRs) with conduction velocities in the Aδ range or above and distinct adaptation properties ranging from intermediately adapting (IA) to rapidly adapting (RA). IA units were sensitive to both static indentation and stroking, while RA units had a preference for tangential forces applied by stroking. Lingual LTMRs were not directly responsive to rapid cooling or chemicals that can induce astringent or numbing sensations. Sparse labeling of lingual afferents in the tongue revealed distinct terminal morphologies and innervation patterns in fungiform and filiform papillae. Together, our results indicate that fungiform papillae are mechanosensory structures, while suggesting a simple model that links the functional and anatomical properties of tactile sensory neurons in the tongue.

Publication types

  • Preprint