Objectives: Accurate preoperative estimation of the risk of breast-conserving surgery (BCS) resection margin positivity would be beneficial to surgical planning. In this multicenter validation study, we developed an MRI-based radiomic model to predict the surgical margin status.
Methods: We retrospectively collected preoperative breast MRI of patients undergoing BCS from three hospitals (SYMH, n = 296; SYSUCC, n = 131; TSPH, n = 143). Radiomic-based model for risk prediction of the margin positivity was trained on the SYMH patients (7:3 ratio split for the training and testing cohorts), and externally validated in the SYSUCC and TSPH cohorts. The model was able to stratify patients into different subgroups with varied risk of margin positivity. Moreover, we used the immune-radiomic models and epithelial-mesenchymal transition (EMT) signature to infer the distribution patterns of immune cells and tumor cell EMT status under different marginal status.
Results: The AUCs of the radiomic-based model were 0.78 (0.66-0.90), 0.88 (0.79-0.96), and 0.76 (0.68-0.84) in the testing cohort and two external validation cohorts, respectively. The actual margin positivity rates ranged between 0-10% and 27.3-87.2% in low-risk and high-risk subgroups, respectively. Positive surgical margin was associated with higher levels of EMT and B cell infiltration in the tumor area, as well as the enrichment of B cells, immature dendritic cells, and neutrophil infiltration in the peritumoral area.
Conclusions: This MRI-based predictive model can be used as a reliable tool to predict the risk of margin positivity of BCS. Tumor immune-microenvironment alteration was associated with surgical margin status.
Clinical relevance statement: This study can assist the pre-operative planning of BCS. Further research on the tumor immune microenvironment of different resection margin states is expected to develop new margin evaluation indicators and decipher the internal mechanism.
Key points: • The MRI-based radiomic prediction model (CSS model) incorporating features extracted from multiple sequences and segments could estimate the margin positivity risk of breast-conserving surgery. • The radiomic score of the CSS model allows risk stratification of patients undergoing breast-conserving surgery, which could assist in surgical planning. • With the help of MRI-based radiomics to estimate the components of the immune microenvironment, for the first time, it is found that the margin status of breast-conserving surgery is associated with the infiltration of immune cells in the microenvironment and the EMT status of breast tumor cells.
Keywords: Breast neoplasms; General surgery; Machine learning; Magnetic resonance imaging; Tumor microenvironment.
© 2023. The Author(s), under exclusive licence to European Society of Radiology.