Observer preference of artificial intelligence-generated versus clinical prostate contours for ultrasound-based high dose rate brachytherapy

Med Phys. 2023 Oct;50(10):5935-5943. doi: 10.1002/mp.16716. Epub 2023 Sep 4.

Abstract

Background: For trans-rectal ultrasound (TRUS)-based high dose rate (HDR) prostate brachytherapy, prostate contouring can be challenging due to artifacts from implanted needles, bleeding, and calcifications.

Purpose: To evaluate the geometric accuracy and observer preference of an artificial intelligence (AI) algorithm for generating prostate contours on TRUS images with implanted needles.

Methods: We conducted a retrospective study of 150 patients, who underwent HDR brachytherapy. These patients were randomly divided into training (104), validation (26) and testing (20) sets. An AI algorithm was trained/validated utilizing the TRUS image and reference (clinical) contours. The algorithm then provided contours for the test set. For evaluation, we calculated the Dice coefficient between AI and reference prostate contours. We then presented AI and reference contours to eight clinician observers, and asked observers to select their preference. Observers were blinded to the source of contours. We calculated the percentage of cases in which observers preferred AI contours. Lastly, we evaluate whether the presence of AI contours improved the geometric accuracy of prostate contours provided by five resident observers for a 10-patient subset.

Results: The median Dice coefficient between AI and reference contours was 0.92 (IQR: 0.90-0.94). Observers preferred AI contours for a median of 57.5% (IQR: 47.5, 65.0) of the test cases. For resident observers, the presence of AI contours was associated with a 0.107 (95% CI: 0.086, 0.128; p < 0.001) improvement in Dice coefficient for the 10-patient subset.

Conclusion: The AI algorithm provided high-quality prostate contours on TRUS with implanted needles. Further prospective study is needed to better understand how to incorporate AI prostate contours into the TRUS-based HDR brachytherapy workflow.

Keywords: artificial intelligence; deep learning; high-dose-rate brachytherapy; prostate; trans-rectal ultrasound.