Direction-dependent differences in the quality and quantity of horizontal reaching in people after stroke

J Neurophysiol. 2023 Oct 1;130(4):861-870. doi: 10.1152/jn.00455.2022. Epub 2023 Sep 5.

Abstract

Arm reaching is often impaired in individuals with stroke. Nonetheless, how aiming directions influence reaching performance and how such differences change with motor recovery over time remain unclear. Here, we elucidated kinematic parameters of reaching toward various directions in people with poststroke hemiparesis in the subacute phase. A total of 13 and 15 participants with mild and moderate-to-severe hemiparesis, respectively, performed horizontal reaching in eight directions with their more-affected and less-affected sides using an exoskeleton robotic device at the time of admission to and discharge from the rehabilitation ward of the hospital. The movement time, path length, and number of velocity peaks were computed for the mild group (participants able to reach toward all eight directions). In addition, the total amount of displacement (i.e., movement quantity) toward two simplified directions (mediolateral or anteroposterior) was evaluated for the moderate-to-severe group (participants who showed difficulty in completing the reaching task). Motor recovery was evaluated using the Fugl-Meyer assessment. The mild group showed worse values of movement parameters during reaching in the anteroposterior direction, irrespective of the side of the arm or motor recovery achieved. The moderate-to-severe group exhibited less movement toward the anteroposterior direction than toward the mediolateral direction at admission; however, this direction-dependent bias in movement quantity decreased, with the movement expanding toward the anteroposterior direction with motor recovery at discharge. These results suggest that direction-dependent differences in the quality and quantity of reaching performance exist in people after stroke, regardless of the presence or severity of hemiparesis. This highlights the need to consider the task work area when designing rehabilitative training.NEW & NOTEWORTHY Arm reaching, a fundamental function required for the upper extremities, is often impaired after stroke due to muscle weakness and abnormal synergies. Nonetheless, how aiming directions influence performance remains unclear. Here, we report that direction-dependent differences in the quality and quantity of reaching performance exist, surprisingly regardless of the presence or severity of hemiparesis. This result highlights the need to consider the task work area when designing rehabilitative training.

Keywords: cerebrovascular disorders; hemiparesis; reaching; robotics; upper extremity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Exoskeleton Device*
  • Humans
  • Movement
  • Paresis / etiology
  • Robotics*
  • Stroke* / complications