Objective.To experimentally validate a method to create continuous time-resolved estimated synthetic 4D-computed tomography datasets (tresCTs) based on orthogonal cine MRI data for lung cancer treatments at a magnetic resonance imaging (MRI) guided linear accelerator (MR-linac).Approach.A breathing porcine lung phantom was scanned at a CT scanner and 0.35 T MR-linac. Orthogonal cine MRI series (sagittal/coronal orientation) at 7.3 Hz, intersecting tumor-mimicking gelatin nodules, were deformably registered to mid-exhale 3D-CT and 3D-MRI datasets. The time-resolved deformation vector fields were extrapolated to 3D and applied to a reference synthetic 3D-CT image (sCTref), while accounting for breathing phase-dependent lung density variations, to create 82 s long tresCTs at 3.65 Hz. Ten tresCTs were created for ten tracked nodules with different motion patterns in two lungs. For each dataset, a treatment plan was created on the mid-exhale phase of a measured ground truth (GT) respiratory-correlated 4D-CT dataset with the tracked nodule as gross tumor volume (GTV). Each plan was recalculated on the GT 4D-CT, randomly sampled tresCT, and static sCTrefimages. Dose distributions for corresponding breathing phases were compared in gamma (2%/2 mm) and dose-volume histogram (DVH) parameter analyses.Main results.The mean gamma pass rate between all tresCT and GT 4D-CT dose distributions was 98.6%. The mean absolute relative deviations of the tresCT with respect to GT DVH parameters were 1.9%, 1.0%, and 1.4% for the GTVD98%,D50%, andD2%, respectively, 1.0% for the remaining nodulesD50%, and 1.5% for the lungV20Gy. The gamma pass rate for the tresCTs was significantly larger (p< 0.01), and the GTVD50%deviations with respect to the GT were significantly smaller (p< 0.01) than for the sCTref.Significance.The results suggest that tresCTs could be valuable for time-resolved reconstruction and intrafractional accumulation of the dose to the GTV for lung cancer patients treated at MR-linacs in the future.
Keywords: MR-linac; dose reconstruction; lung cancer; porcine lung phantom; propagation method; synthetic 4D-CT.
Creative Commons Attribution license.