To rewire or not to rewire: To what extent rewiring to surviving partners can avoid extinction?

J Anim Ecol. 2023 Sep;92(9):1676-1679. doi: 10.1111/1365-2656.13972.

Abstract

Research Highlight: Leimberger, K.G., Hadley, A.S., & Betts, M.G. (2023). Plant-hummingbird pollination networks exhibit minimal rewiring after experimental removal of a locally abundant plant species. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13935. In this paper, Leimberger, Hadley and Betts (2023) explore the effects of removing a locally abundant plant species on plant-hummingbird pollination networks. They experimentally prevented access of hummingbirds to flowers of Heliconia tortuosa and assessed subsequent changes in the interactions between plants and hummingbirds. Their main hypothesis postulated that the loss of a highly connected species would lead to interaction rewiring and niche expansions by hummingbirds, decreasing individual, species and network specialization. However, they found that the overall structure of the plant-hummingbird networks remains mostly unaltered, with limited rewiring and minimal changes in specialization. The main contributions of this study can be summarized as (i) it adds to a limited number of manipulative studies on the capacity of species to rewire their interactions following the loss of partners, and importantly, it is the first study from the tropics and with vertebrate pollinators, for which experimental studies at appropriate scales is intrinsically more challenging; and (ii) innovates by evaluating change in specialization for the individual level, carried out through pollen sampling on the body of hummingbirds. The limited change in species interactions highlights that network stability through interaction rewiring may have been overestimated in previous studies, calling for further manipulative studies in the field. At the same time, it also indicated that even the loss of a highly abundant plant species has an overall small effect on network structure. Thus, this study contributes timely findings regarding the capacity of ecological communities to respond to species extinctions.

Keywords: co-extinction; hummingbirds; interaction rewiring; mutualistic networks; pollination; robustness; specialization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Comment

MeSH terms

  • Animals
  • Ecology*
  • Extinction, Biological*
  • Flowers
  • Pollen
  • Pollination