Helicobacter pylori (H. pylori) is a causative agent of various gastrointestinal diseases and eradication mainly relies on antibiotic treatment, with (AMX) being a key component. However, rising antibiotic resistance in H. pylori necessitates the use of antibiotics combination therapy, often disrupting gut microbiota equilibrium leading to further health complications. This study investigates a novel strategy utilizing AMX-loaded chitosan nanoparticles (AMX-CS NPs), co-administered with prebiotic inulin to counteract H. pylori infection while preserving microbiota health. Following microbroth dilution method, AMX displayed efficacy against H. pylori, with a MIC50 of 48.34 ± 3.3 ng/mL, albeit with a detrimental impact on Lactobacillus casei (L. casei). The co-administration of inulin (500 μg/mL) with AMX restored L. casei viability while retaining the lethal effect on H. pylori. Encapsulation of AMX in CS-NPs via ionic gelation method, resulted in particles of 157.8 ± 3.85 nm in size and an entrapment efficiency (EE) of 86.44 ± 2.19 %. Moreover, AMX-CS NPs showed a sustained drug release pattern over 72 h with no detectable toxicity on human dermal fibroblasts cell lines. Encapsulation of AMX into CS NPs also reduced its MIC50 against H. pylori, while its co-administration with inulin maintained L. casei viability. Interestingly, treatment with AMX-CS NPs also reduced the expression of the efflux pump gene hefA in H. pylori. This dual treatment strategy offers a promising approach for more selective antimicrobial treatment, minimizing disruption to healthy microbial communities while effectively addressing pathogenic threats.
Keywords: Amoxicillin; Antibiotic resistance; Chitosan nanoparticles; H. pylori; Inulin; L. casei; hefA.
Copyright © 2023 Elsevier B.V. All rights reserved.