The pathogen-associated protein 1 (PR1) plays an important role in plant response to biotic and abiotic stresses. In this study, 17 PtPR1 genes were identified in Populus trichocarpa genome. The 17 PtPR1 genes were distributed on 7 chromosomes, and divided into A, B subfamilies by evolutionary tree analysis. RTqPCR analysis showed that the PtPR1 gene family showed different degrees of response to drought stress. PtPR1 genes showed changes in expression in response to fungal pathogen Septotinia populiperda or insect attacks (Nausinoe geometralis, Hyphantria cunea). Also, we found that subfamily B of PtPR1 may play an important role in response to biotic stress. We identified a new resistance gene PtPR1A. Overexpression of PtPR1A in Arabidopsis thaliana significantly enhanced the resistance to Pseudomonas syringae, while overexpression of PtPR1A in poplar significantly enhanced the resistance to S. populiperda. The present study investigates the expression pattern of the PtPR1 genes under biotic and abiotic stresses, and it found that the characteristics of the PtPR1 genes diverged, which provided a theoretical basis for the further study of the PtPR1 genes in the plant defense response.
Keywords: Gene expression; PR1; Poplar; Recombinant PtPR1.
Copyright © 2023 Elsevier B.V. All rights reserved.