Systematic review of externally validated machine learning models for predicting acute kidney injury in general hospital patients

Front Nephrol. 2023 Aug 3:3:1220214. doi: 10.3389/fneph.2023.1220214. eCollection 2023.

Abstract

Acute kidney injury (AKI) is one of the most common and consequential complications among hospitalized patients. Timely AKI risk prediction may allow simple interventions that can minimize or avoid the harm associated with its development. Given the multifactorial and complex etiology of AKI, machine learning (ML) models may be best placed to process the available health data to generate accurate and timely predictions. Accordingly, we searched the literature for externally validated ML models developed from general hospital populations using the current definition of AKI. Of 889 studies screened, only three were retrieved that fit these criteria. While most models performed well and had a sound methodological approach, the main concerns relate to their development and validation in populations with limited diversity, comparable digital ecosystems, use of a vast number of predictor variables and over-reliance on an easily accessible biomarker of kidney injury. These are potentially critical limitations to their applicability in diverse socioeconomic and cultural settings, prompting a need for simpler, more transportable prediction models which can offer a competitive advantage over the current tools used to predict and diagnose AKI.

Keywords: AKI; acute kidney injury; machine learning; models; prediction; risk score; systematic review.

Publication types

  • Systematic Review

Grants and funding

MW declared funding from the University of Queensland’s Research and Training Scholarship and the Digital Health CRC of Australia. SS declared funding from The Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS, CE170100009). EF received funding from University of Queensland Research Strategic Funding, AI for Pandemics. DJ declared funding from research grants from Baxter and Fresenius Medical Care and the Australian National Health and Medical Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.