Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses

Nat Biomed Eng. 2023 Sep;7(9):1142-1155. doi: 10.1038/s41551-023-01086-2. Epub 2023 Sep 7.

Abstract

Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylgalactosamine
  • Animals
  • Autoimmunity
  • Encephalomyelitis, Autoimmune, Experimental* / therapy
  • Glycosylation
  • Immune Tolerance*
  • Mice

Substances

  • Acetylgalactosamine