Protocol: identifying policy, system, and environment change interventions to enhance availability of blood for transfusion in Kenya, a mixed-methods study

BMC Health Serv Res. 2023 Sep 7;23(1):963. doi: 10.1186/s12913-023-09936-0.

Abstract

Background: Safe blood is essential for the care of patients with life-threatening anemia and hemorrhage. Low blood donation rates, inefficient testing procedures, and other supply chain disruptions in blood administration affect patients in low-resource settings across Sub-Saharan countries, including Kenya. Most efforts to improve access to transfusion have been unidimensional, usually focusing on only point along the blood system continuum, and have excluded community stakeholders from early stages of intervention development. Context-appropriate interventions to improve the availability of safe blood at the point of use in low-resource settings are of paramount importance. Thus, this protocol proposes a multifaceted approach to characterize the Kenyan blood supply chain through quantitative and qualitative analyses as well as an industrial engineering approach.

Methods: This study will use a mixed-methods approach in addition to engineering process mapping, modeling and simulation of blood availability in Kenya. It will be guided by a multidimensional three-by-three-by-three matrix: three socioeconomic settings, three components of the blood system continuum, and three levels of urgency of blood transfusion. Qualitative data collection includes one-on-one interviews and focus group discussions with stakeholders across the continuum to characterize ground-level deficits and potential policy, systems, and environment (PSE) interventions. Prospectively-collected quantitative data will be used to estimate blood collection and transfusion of blood. We will create a process map of the blood system continuum to model the response to PSE changes proposed by stakeholders. Lastly, we will identify those PSE changes that may have the greatest impact on blood transfusion availability, accounting for differences across socioeconomic settings and levels of urgency.

Discussion: Identifying and prioritizing community-driven interventions to improve blood supply in low-resource settings are of utmost importance. Varied constraints in blood collection, processing, delivery, and use make each socioeconomic setting unique. Using a multifaceted approach to understand the Kenyan blood supply and model the response to stakeholder-proposed PSE changes may lead to identification of contextually appropriate intervention targets to meet the transfusion needs of the population.

Keywords: Anemia; Bleeding; Blood supply; Blood transfusion; Industrial engineering; Kenya; Mixed-methods; Policy system and environment change; Process mapping; Sub-Saharan Africa.

MeSH terms

  • Blood Donation*
  • Blood Transfusion*
  • Computer Simulation
  • Humans
  • Kenya
  • Policy