Under macromolecular crowding (MC) conditions such as cellular, extracellular, food and other environments of biotechnological interest, the thermodynamic activity of the different macromolecules present in the system is several orders of magnitude higher than in dilute solutions. In this state, the diffusion rates are affected by the volume exclusion induced by the crowders. Immiscible liquid phases, which may arise in MC by liquid-liquid phase separation, may induce a dynamic confinement of reactants, products and/or enzymes, tuning reaction rates. In cellular environments and other crowding conditions, membranes and macromolecules provide, on the whole, large surfaces that can perturb the solvent, causing its immobilisation by adsorption in the short range and also affecting the solvent viscosity in the long range. The latter phenomenon can affect the conformation of a protein and/or the degree of association of its protomers and, consequently, its activity. Changes in the water structure can also alter the enzyme-substrate interaction, and, in the case of hydrolytic enzymes, where water is one of the substrates, it also affects the reaction mechanism. Here, we review the evidence for how macromolecular crowding affects the catalysis induced by hydrolytic enzymes, focusing on the structure and dynamics of water.
Keywords: Hydrolases; Macromolecular crowding; Membrane-water interface; Mesoporous matrix; Water spin isomers; Water structure.
© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.