Cardioprotective effect of the quercetin on cardiovascular remodeling and atherosclerosis in rodents fed a high-fat diet: A systematic review

Chem Biol Interact. 2023 Oct 1:384:110700. doi: 10.1016/j.cbi.2023.110700. Epub 2023 Sep 9.

Abstract

Cardiovascular diseases (CVD) are the leading cause of death globally, estimated at 17.9 million premature deaths. Several risk factors contribute to the development of CVD, including unhealthy diet rich in saturated fat. Quercetin (Q) is a important natural flavonoid with cardioprotective effect. However, it is crucial to understand and clarify which dosages and intervention times quercetin promotes better cardioprotective effects when exposed to a High-Fat Diet (HFD). We aim was to carry out a review to identify and compare experimental studies that investigated the quercetin effect on cardiac parameters in rodents fed a HFD. This literature search was performed through the specialized databases PubMed, Embase, Web of Science and Lilacs in May 2022. The following information was collected and assessed: Species of animals, dietary fat content, intervention protocol (quercetin), and main results of alterations associated with cardiac change. A total of 116 articles were selected from the database and 30 articles were included in this study. The administration form of quercetin was used in the diet supplemented in 73.4% (n = 22) of the studies. The dosage ranged between 10 and 100 mg/kg, 0.01%-0.36%, and 4-8 g/kg diet. The treatment time ranged between 14 and 63 days in 48.4% studies and most of the selected studies observed changes in the: Serum concentrations of lipids (60%, n = 18) mainly decrease in TC and TG, left ventricle (LV) (16.13%, n = 5) includes attenuation of the cardiac hypertrophy; inhibition of atherosclerotic progression (32%, n = 10) with decrease in lesions and plaque formation; improvement in the expression of gene and protein associated with cardiac functionality and oxidative stress (51.6%; n = 16). Quercetin supplementation at different concentrations/doses promotes important cardioprotective effects in experimental models exposed to a HFD. The supplemented diet was shown to be the better administration option. The methodological variation presented in the articles selected in this review proves that the most appropriate intervention protocol, as well as the most effective route of administration, promotes these effects.

Keywords: Cardiovascular disease; High-fat diet; Oxidative stress; Quercetin; Rats.

Publication types

  • Review