β1 integrins regulate cellular behaviors and cardiomyocyte organization during ventricular wall formation

bioRxiv [Preprint]. 2023 Aug 29:2023.08.28.555112. doi: 10.1101/2023.08.28.555112.

Abstract

Aims: The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse.

Methods and results: We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, while fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1 , which encodes the β1 integrin subunit, was deleted via Nkx2.5 Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of trabecular zone but a thicker compact zone. The abundances of hyaluronic acid and versican are not significantly different. Instead, fibronectin, a ligand of β1, was absent in B1KO. We examined cellular behaviors and organization via various tools. B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. The reduction of Notch1 activation was not the cause of the abnormal cellular organization in B1KO hearts. Mosaic clonal lineage tracing shows that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously.

Conclusions: β1 is asymmetrically localized in the cardiomyocytes, and its ECM ligands are enriched in the luminal side of the myocardium and surrounding cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 , leading to ablation of β1 integrins, causes the dissociation of cardiomyocytes from the ECM network and failure to establish tissue architecture to form trabeculae.

Publication types

  • Preprint