Background and purpose: The association between dose to selected bladder and rectum symptom-related sub-regions (SRS) and late toxicity after prostate cancer radiotherapy has been evidenced by voxel-wise analyses. The aim of the current study was to explore the feasibility of combining knowledge-based (KB) and multi-criteria optimization (MCO) to spare SRSs without compromising planning target volume (PTV) dose delivery, including pelvic-node irradiation.
Materials and methods: Forty-five previously treated patients (74.2 Gy/28fr) were selected and SRSs (in the bladder, associated with late dysuria/hematuria/retention; in the rectum, associated with bleeding) were generated using deformable registration. A KB model was used to obtain clinically suitable plans (KB-plan). KB-plans were further optimized using MCO, aiming to reduce dose to the SRSs while safeguarding target dose coverage, homogeneity and avoiding worsening dose volume histograms of the whole bladder, rectum and other organs at risk. The resulting MCO-generated plans were examined to identify the best-compromise plan (KB + MCO-plan).
Results: The mean SRS dose decreased in almost all patients for each SRS. D1% also decreased in the large majority, less frequently for dysuria/bleeding SRS. Mean differences were statistically significant (p < 0.05) and ranged between 1.3 and 2.2 Gy with maximum reduction of mean dose up to 3-5 Gy for the four SRSs. The better sparing of SRSs was obtained without compromising PTVs coverage.
Conclusions: Selectively sparing SRSs without compromising PTV coverage is feasible and has the potential to reduce toxicities in prostate cancer radiotherapy. Further investigation to better quantify the expected risk reduction of late toxicities is warranted.
Keywords: Automated planning; Dose-outcome correlation; Multi-criteria optimization; Prostate cancer; Radiotherapy.
© 2023 The Author(s).