Moths rely on plant volatiles to locate appropriate plants for feeding and laying eggs. While extensive research has been conducted on the global agricultural pests, Spodoptera frugiperda and Spodoptera litura, their molecular mechanisms for detecting plant volatiles remain mostly unknown. Here, we have demonstrated that nonanal, a common plant volatile, is attractive for both virgin and gravid females of the two species. Second, we have identified a conserved odorant receptor clade (SfruOR47 clade) that is primarily tuned to nonanal. Finally, by three-dimensional (3D) structure prediction, molecular docking, and site-directed mutagenesis, we have revealed that the His57 and Glu61 residues, also shared by other six orthologous ORs, are essential for nonanal binding in SfruOR47 and SlituOR9, indicating the conserved structure and function of ORs in the SfruOR47 clade. These findings offer novel insights into the molecular mechanisms and evolutionary aspects of moth behavior in response to plant volatiles.
Keywords: S. frugiperda; S. litura; SfruOR47 clade; nonanal; site-directed mutagenesis; two-electrode voltage clamp system.