Structural and Chemical Properties of NiOx Thin Films: Oxygen Vacancy Formation in O2 Atmosphere

Chemphyschem. 2023 Dec 1;24(23):e202300231. doi: 10.1002/cphc.202300231. Epub 2023 Sep 27.

Abstract

NiOx films on Si(111) were put in contact with oxygen at elevated temperatures. During heating and cooling in oxygen atmosphere Near Ambient Pressure (NAP)-XPS and -XAS and work function (WF) measurements reveal the creation and replenishing of oxygen vacancies in dependence of temperature. Oxygen vacancies manifest themselves as a distinct O1s feature at 528.9 eV on the low binding energy side of the main NiO peak as well as by a distinct deviation of the Ni2p3/2 spectral features from the typical NiO spectra. DFT calculations reveal that the presence of oxygen vacancies leads to a charge redistribution and altered bond lengths of the atoms surrounding the vacancies causing the observed spectral changes. Furthermore, we observed that a broadening of the lowest energy peak in the O K-edge spectra can be attributed to oxygen vacancies. In the presence of oxygen vacancies, the WF is lowered by 0.1 eV.

Keywords: adsorption; nickel; oxide; oxygen; vacancy.