Introduction and aim: Severe haemophilia B (HB) is characterized by spontaneous bleeding episodes, mostly into joints. Recurrent bleeds lead to progressive joint destruction called haemophilic arthropathy. The current concept of prophylaxis aims at maintaining the FIX level >3-5 IU/dL, which is effective at reducing the incidence of haemophilic arthropathy. Extended half-life FIX molecules make it easier to achieve these target trough levels compared to standard FIX concentrates. We previously reported that the fusion of a recombinant FIX (rFIX) to factor XIII-B (FXIIIB) subunit prolonged the half-life of the rFIX-LXa-FXIIIB fusion molecule in mice and rats 3.9- and 2.2-fold, respectively, compared with rFIX-WT. However, the mechanism behind the extended half-life was not known.
Materials and methods: Mass spectrometry and ITC were used to study interactions of rFIX-LXa-FXIIIB with albumin. Pharmacokinetic analyses in fibrinogen-KO and FcRn-KO mice were performed to evaluate the effect of albumin and fibrinogen on in-vivo half-life of rFIX-LXa-FXIIIB. Finally saphenous vein bleeding model was used to assess in-vivo haemostatic activity of rFIX-LXa-FXIIIB.
Results and conclusion: We report here the key interactions that rFIX-LXa-FXIIIB may have in plasma are with fibrinogen and albumin which may mediate its prolonged half-life. In addition, using the saphenous vein bleeding model, we demonstrate that rFIX-FXIIIB elicits functional clot formation that is indistinguishable from that of rFIX-WT.
Keywords: albumin; extended half-life Factor IX; factor XIII-B sub-unit; fibrinogen; fusion protein.
© 2023 John Wiley & Sons Ltd.