Synthesis, Characterization, Analytical Application, and Theoretical Studies of a Schiff Base, (E)-2-(2-aminophenylthio)-N-(Thiophen-2-yl-methylene) Benzenamine

J Fluoresc. 2024 Sep;34(5):2093-2103. doi: 10.1007/s10895-023-03435-5. Epub 2023 Sep 14.

Abstract

In this study, a new Schiff base, (E)-2-(2-aminophenylthio)-N-(thiophen-2-yl-methylene) benzenamine was synthesized for selective detection of Hg2+. This Schiff base was characterized by proton nuclear magnetic resonance (1HNMR), carbon-13 nuclear magnetic resonance (13CNMR), and Fourier-transform infrared (FTIR) spectroscopy. Binding interaction between (E)-2-(2-aminophenylthio)-N-(thiophen-2-yl-methylene)benzenamine and various metal ions has been studied by UV-Vis spectroscopic measurements and shows promising coordination towards Hg2+ and almost no interference from other metal ions (Ag+, Mn2+, Fe3+, Al3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Fe2+ and Cr3+).This Schiff base exhibiting detection limit of 3.8 × 10- 8 M. The Schiff base newly synthesized in this study was successfully applied to the determination of Hg2+ in water samples. In addition to the experimental study, a theoretical study was conducted using Gaussian 09 program to support the experimental findings. FTIR, NMR, bond angle, bond length, torsional angles, and structural approximation were studied using theoretical consideration.

Keywords: DFT calculation; Detection limit; Fluorescence enhancement; Mercury (II); Schiff base.