Introduction: An increased incidence of metabolic syndrome has been observed in human immunodeficiency virus (HIV)-infected individuals. In contrast, gut dysbiosis is involved in various pathogeneses, including vascular endothelial disorders. Organic acids, including short-chain fatty acids (SCFAs), are essential for maintaining gut homeostasis. Therefore, this study aimed to explore the gut microbiome profile and organic acids in a Japanese population infected with HIV.
Methods: Forty-nine patients with HIV infection on combination antiretroviral therapy (cART) were enrolled and divided into the high and low CD4 groups based on a CD4 cutoff of 350 cells/μL. Stool samples were analyzed by 16S ribosomal RNA next-generation sequencing and high-performance liquid chromatography. The association between the gut microbiome, including bacterial taxa and organic acids, was statistically analyzed.
Results: The fecal microbial community composition was significantly different between HIV patients with CD4 counts above and below 350 cells/μL. The relative abundance of Roseburia, Prevotella, Prevotella_9, and [Clostridium]_methylpentosum_group were significantly enriched in the high CD4 group. Fecal succinic acid tended to be more abundant in the low CD4 group, and acetic, propionic, and butyric acids tended to be more abundant in the high CD4 group. Roseburia was positively correlated with butyric acid levels. Prevotella_9 and Prevotella were negatively correlated with succinic acid levels and positively correlated with acetic and propionic acid levels.
Conclusions: This study showed intestinal dysbiosis bordering on a CD4 count of 350 in patients with HIV infection undergoing cART. These findings might help in understanding intestinal damage and systemic inflammation in HIV infection.
Keywords: Gut microbiota; HIV; Prevotella_9; Roseburia; Short-chain fatty acid; Succinic acid.
Copyright © 2023 Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases, and Japanese Society for Infection Prevention and Control. Published by Elsevier Ltd. All rights reserved.