Network pharmacology and molecular docking to explore the mechanism of Sheng Xue Bao mixture against iron deficiency anemia

Medicine (Baltimore). 2023 Sep 15;102(37):e35012. doi: 10.1097/MD.0000000000035012.

Abstract

Based on network pharmacology and molecular docking, we investigated the mechanism of action of Sheng Xue Bao mixture (SXBM) in treating iron deficiency anemia (IDA). We screened the HERB and traditional Chinese medicine systems pharmacology database and analysis platform databases to identify the active ingredients and targets of SXBM. The targets associated with "iron deficiency anemia" were collected from GeneCards, TTD, and OMIM databases. A component-target interaction network was constructed using Cytoscape 3.8.2. The protein-protein interaction network of candidate targets was generated using the STRING database and visualized with Cytoscape 3.8.2 software. Core modules obtained from clustering analysis were subjected to Gene Ontology and Kyoto encyclopedia of genes and genomes enrichment analysis. Finally, molecular docking validation of key targets and active components was performed using Autodock Vina software. A total of 174 active components and 111 genes were identified as potential active components and targets for IDA treatment, including quercetin, kaempferol, luteolin, beta-sitosterol, and other flavonoids as main active components. Gene Ontology enrichment analysis show that interleaved genes are enriched in 2328 biological processes, 71 cellular component expression processes, and 157 molecular function processes. Kyoto encyclopedia of genes and genomes analysis mainly envolved Prostate cancer, Hepatitis B, Kaposi sarcoma-associated herpesvirus infection, Endocrine resistance, Lipid and atherosclerosis, Central carbon metabolism in cancer, Human cytomegalovirus infection and HIF-1 signaling pathway. STAT3, SRC, PIK3R1, and GRB2 were selected as core targets. The molecular docking results demonstrated strong interactions between key components and their respective target proteins. Network pharmacological analysis suggested that SXBM could treat IDA by regulating various biological processes and related signaling pathways. It laid the foundation for further elucidating the molecular mechanism of SXBM treatment of IDA.

MeSH terms

  • Anemia, Iron-Deficiency* / drug therapy
  • Genes, Regulator
  • Humans
  • Male
  • Molecular Docking Simulation
  • Network Pharmacology*
  • Protein Interaction Maps