Parallel Chondrogenesis and Osteogenesis Tissue Morphogenesis in Muscle Tissue via Combinations of TGF-β Supergene Family Members

Cartilage. 2023 Sep 15:19476035231196224. doi: 10.1177/19476035231196224. Online ahead of print.

Abstract

Objective: This study aimed to decipher the temporal and spatial signaling code for clinical cartilage and bone regeneration. We investigated the effects of continuous equal dosages of a single, dual, or triplicate growth factor combination of bone morphogenetic protein (BMP)-2, transforming growth factor (TGF)-β3, and/or BMP-7 on muscle tissue over a culturing period. The hypothesis was that specific growth factor combinations at specific time points direct tissue transformation toward endochondral bone or cartilage formation.

Design: The harvested muscle tissues from F-344 adult male rats were cultured in 96-well plates maintained in a specific medium and cultured at specific conditions. And the multidimensional and multi-time point analyses were performed at both the genetic and protein levels.

Results: The results insinuate that the application of growth factor stimulates a chaotic tissue response that does not follow a chronological signaling cascade. Both osteogenic and chondrogenic genes showed upregulation after induction, a similar result was also observed in the semiquantitative analysis after immunohistochemical staining against different antigens.

Conclusions: The study showed that multiple TGF-β superfamily proteins applied to tissue stimulate developmental tissue processes that do not follow current tissue formation rules. The findings contribute to the understanding of the chronological order of signals and expression patterns needed to achieve chondrogenesis, articular chondrogenesis, or osteogenesis, which is crucial for the development of treatments that can regrow bone and articular cartilage clinically.

Keywords: TGF-β supergene family proteins; endochondral bone formation; modulation; morphogen combinations; parallel tissue induction; tissue morphogenesis; transformation.