The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism

Nat Commun. 2023 Sep 15;14(1):5728. doi: 10.1038/s41467-023-41462-9.

Abstract

Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors. We show that darapladib is able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, we find that Lp-PLA2 is located in the membrane and cytoplasm and suppresses ferroptosis, suggesting a critical role for intracellular Lp-PLA2. Lipidomic analyses show that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriches phosphatidylethanolamine species and reduces lysophosphatidylethanolamine species. Moreover, combination treatment of darapladib with the GPX4 inhibitor PACMA31 efficiently inhibits tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Alkyl-2-acetylglycerophosphocholine Esterase / antagonists & inhibitors
  • Ferroptosis*
  • Humans
  • Lipid Metabolism / drug effects
  • Neoplasms* / drug therapy

Substances

  • 1-Alkyl-2-acetylglycerophosphocholine Esterase
  • darapladib
  • PACMA-31